Technical program

The LABAT'2020 Conference technical program will be organized in morning and afternoon sessions on different topics.

Conference sessions will start at 08:30 on Tuesday, 9 June 2020 and will end at about 14:00 on Friday, 12 June 2020. The duration of each oral presentation will be 20 minutes followed by 5 minutes for discussion. The final agenda of the conference will be published on this web-page by the end of April 2020.

The official language of the Conference is English, no translation facilities will be provided.

Poster sessions will also be organized during the LABAT’2020 Conference. Authors who prefer to contribute poster(s) rather than oral presentation(s) should inform the Conference Organizers of their preference.

During the first two days of the conference the coffee/tea breaks will be extended to 40 minutes for exhibition and poster viewing.

Authors of oral/poster presentations should refer to the Instructions for Authors section to see the requirements for preparation and submission of extended abstracts and poster preparation.











Challenges for lead batteries and ways for them to continue being the most used electrochemical power source

B. Monahov, USA, Plante Medalist LABAT’2014


Particle size and surface shape of active materials in lead-acid batteries: impact from free surface energy    

E. Meissner, Germany, Plante Medalist LABAT’2014


Development of technologies for automotive lead-acid batteries

J. Furukawa, Japan, Plante Medalist LABAT’2017


PAM structure, investigated by tubular powder electrode (TPE)

G. Papazov, Bulgaria, Plante Medalist LABAT’2017

  5 Impact of carbon additives on current and next generation lead batteries – market and technology trends
    P. Atanassova, Cabot Corp., USA
  6 How to develop best graphite products for lead-carbon battery applications
    J.Li, F.Henry, Y.Feng, Superior Graphite Co., USA
  7 Synthesis of Carbon/Pb nanocomposites and their application to lead-acid battery negative electrode
    P.Nikolov, V.Boev, A.Aleksandrova, M.Matrakova, IEES-BAS, Bulgaria
  8 High performance carbons for advanced lead-acid batteries 
    F.Mornaghini, Y.Ahn, D.Cericola, Imerys Graphite & Carbon, Switzerland
  9 Influence of graphene/carbon black mixtures on lead-acid negative plate performance 
    A.Assuncao, Sp.Pedrosa. A.Souza, E.S.Goncales, ITEEM, Moura, Brazil
  10 Lead batteries for solar photo-voltaic (SPV) applications: effect of carbon additives 
    S.Arun, U.V.Kiran, S.Mayavan, CSIR-CECRI, India
  11 Rice husk based porous carbons: a cost-effective carbon-based material for the negative electrode of lead carbon batteries
    H.Lin, Jilin University, China.
    Nan Lin, Jilin Kaiyu Electrochemical Energy Storage Technologies Development Co., Ltd., China
    W.Zhang, J.Yin, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
  12 Performance enhancement of lead acid battery (LAB) using different carbon additives
    J.Punjabkesar, H. Coetzer, K.N.Naidoo, Auto X (Pty) Ltd (Willard Batteries), South Africa
  13 Research on the interaction between sodium lignosulfonate and carbon materials
    T.Ban, J.Cheng, Shandong Jinkeli Power Sources Technology Co., Ltd. China 
  14 The study of nanostructured carbon as an electrode material for a hybrid device in an acid electrolyte
    V.A.Grigoreva, S.D.Gritsenko,T.S.Khramkova, M.M.Burashnikova, S.A.Zhdanok, Saratov State University, Russia
  15 The relationship of the structural and electrochemical characteristics of negative electrodes with the addition of nanostructured carbon for lead-acid batteries
    T.S.Khramkova,S.D.Gritsenko, V.O.Danilova, M.M.Burashnikova S.A.Zhdanok, Saratov State University, Russia
  16 Impedance of charged negative electrodes of lead-acid batteries with the addition of nanostructured carbon
    S.D.Gritsenko, T.S.Khramkova, M.M.Burashnikova, S.A.Zhdanok, I.A.Kazarinov, Saratov State University, Russia
  17 A new insight on the roles of carbonaceous additives in lead-carbon battery
    J.Yin, W.Zhang, H.Alshareef, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
    H.Lin, Jilin University, China.
  18 Is it possible to replace red lead by carbon in positive plates and to keep the advantages of red lead?
    P.Nemec-Losert, Hoppecke Batterien, Germany
  19 An enhancing lead depositing ability on carbon surface via BaSO4 modification for a long cycling life lead-acid battery 
    Zh.Lin, H.Lin, Jilin University, China 
    W.Zhang, J.Yin, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
  20 Electrodeposited behaviour of Pb2+ on the carbon of negative electrode in a carbon coating lead-carbon battery during high rate cycling
    J.Bao, H.Lin, Jilin University, China
    N.Lin, J.Shi, Jilin Kaiyu Electrochemical Energy Storage Technologies Development Co., Ltd., China
  21 Exploring the application of rice husk-based porous carbon in positive electrodes of lead acid batteries
    J.Shi, H.Lin, J.Bao, Jilin University, China
    N.Lin, Jilin Kaiyu Electrochemical Energy Storage Technologies Development Co., Ltd., China
  22 Enhancing the performance of lead-acid batteries operating under high-rate partial-state-of-charge condition through spraying carbon black 
    H.N.Ho, K.C.Kung, W.C.Huang, S.L.Wu, H.H.Huang, Y.T.Liu, Y.L.Cheng, W.R.Liu, Chung Yuan Christian University,Taiwan
  23 Electrochemical measurements of single and a coupled lead-graphite felt electrodes in sulfuric acid solution 
    A.Ilginis, E.Griškonis, Kaunas University of Technology, Lithuania
  24 Investigation of different particle size carbon blacks on lead acid battery performance 
    H.Catalkaya, A.Turhan, O.Demirci, İ.Yırtıcı, S.Eserdag, İnci Gs Yuasa, Turkey 
  25 MOLECULAR REBAR®-based performance additives for lead-acid batteries and mechanism thereof 
    P.Everill, S.Swogger, N.Sugumaran, Black Diamond Structures, LLC, USA
  26 Benefits and drawback of active carbon in tubular plate of the battery
    J.Iqbal, Rainbow HI-tech Engineering Company PVT Ltd, Pakistan
  27 Nanostructured carbon implementation in lead-acid battery technology
    S.Zhdanok, A.Bobokov, D.Georgiev, Art Monbat AD, Bulgaria
  28 The effect of additives on the electrical conductivity of negative electrodes 
    P.Wulfert-Holzmann, J.Settelein, G.Sextl, Fraunhofer Institute for Silicate Research ISC, Germany
  29 The effect of lignosulonate and its functional group on the electrochemical reaction on Pb flat electrode
    N.Hirai, National Institute of Technology, Japan
  30 Combinational measurement of cyclic voltammetry and frequency modulation mode atomic force microscopy: The effect of lignosulfonate additive 
    Y.Imamura, T.Akatsu, D.Katsube, A.Kogure, N.Hirai, M.Kimura, Nagaoka University of Technology, Japan
  31 Investigation of hydrogen evolution inhibitors for use in lead-acid batteries 
    M.Donten, Amer-Sil, Luxembourg
  32 In situ EC-AFM observation of the negative lead electrode surface and influence of additives on the utilization process 
    P.Vanysek, P.Bača, P.Cudek, J.Zimakova, Brno Technical University, Czech Republic
  33 Conductive compounds as positive active material enhancers 
    M.García, J.Valenciano, F.Trinidad, Exide Technologies, Spain
  34 Paste additives for improved positive active mass utilization and cycle life of the lead-acid battery 
    J.Kosacki, F.Dogan, B.Craft, R.Payne, F.Fleming, Missouri S&T, USA
  35 XRD study of the effect of additives on dynamic changes of electrode surface composition 
    L.Chladil, P.Vanýsek, On.Čech, J.Smejkal, P.Bača, Brno Technical University, Czech Republic 
  36 Effect of residual elements in lead-acid batteries 
    A.F.Romero, J.Valenciano, H.Fricke, F.Trinidad, E.Fatás, P.Ocón, Exide Technologies, Spain
  37 Application of rice husks as green carbon material in lead-acid battery negative electrodes
    A.Aleksandrova, M.Matrakova, P.Nikolov, IEES-BAS, Bulgaria
  38 The influence of the additives in the active materials on the performance of the positive plate
    M.Matrakova, A.Aleksandrova, P.Nikolov, IEES-BAS, Bulgaria
  39 Physicochemical characterization of the effect of the additive BB on the active masses of lead-acid batteries
    D.Pavlov, V.Naidenov, Y.Milusheva, S.Vassilev, IEES-BAS, Bulgaria
    T.Shibahara, M.Tozuka, Hitachi Chemical Co., Ltd., Japan
  40 Influence of electric current parameters on resistance of inorganic water solutions
    R.H.Sharipov, U.A.Balgimbayeva, E.N.Suleimenov, Kazakh-British Technical University, Republic of Kazakhstan
  41 Influence of rare earth blends to reduce water consumption in lead-acid batteries 
    S.Pedrosa, A.Assuncao, E.S.Goncales, A.Souza, ITEEM, Moura, Brazil 
  42 Tailoring the electrochemically active PbO2 phases 
    H.Gokdemir, M.A.Gulgun, C.H.Yılmaz, C.Acıksarı. M.Mazman, Mutlu Aku ve Malz. San. A.S., Turkey
  43 Electrochemical evaluation of various commercial expanders for lead-acid battery application
    A.Hosseini, Sarv Sanat Toos Co., Iran
  44 Lead-acid battery modified by ionic liquids produced in Autopart 
    K.Kopczyński, A.Gabryelczyk, M.Baraniak, J.Pernak, E.Jankowska, H.Przybyło, W.Rzeszutek, P.Kedzior, G.Lota, Autopart, Poland
  45 About the crystallization processes on the active masses of lead-acid batteries
    V.Naidenov, IEES-BAS, Bulgaria
  46 Structural changes in the active masses by application of external physical influences
    B.Shirov, IEES-BAS, Bulgaria
  47 State of charge and state of health determination of lead-acid batteries using double layer capacitance measurements
    S.Chalasani,  A.Larese, R&D, East Penn Manufacturing Co., USA
  48 Controlling pore structure to increase positive active mass utilization and cycle life of the lead-acid battery 
    J.Kosacki, F.Dogan, B.Craft, R.Payne, F.Fleming, Missouri S&T, USA
  49 Improved plate performance of automotive batteries using tetrabasic seeding material – impact of porosity and electrode structure on electrical performance and cycle life 
    R.Bussar, H.Ramianpour, I.Klein, M.Kirchgessner, PENOX GmbH Germany 
  50 Effect of curing temperature on performance of PAM using 4BS crystal
    H.Hagihara, A.Watanabe, T.Mangahara, J.Furukawa, Furukawa Battery Co., Ltd., Japan 
  51 Research on the process of tubular positive plate formation for lead acid batteries
    Sh.Tang, X.Zhan,T.Wu, L.Chen, Zibo Torch Energy Co., LTD. China 
    P.Nikolov, S.Ruevski, IEES-BAS, Bulgaria
  52 State-of-art in formation and filling process for VRLA batteries in GEL technology
    K.D.Merz, Abertax Technologies, Malta
  53 News and optimization on formation with acid recirculation technology
    Ch.Papmahl, Inbatec, Germany
  54 Lead acid batteries based on chemically prepared (basic) lead sulphate
    L.Lei, J.Yang, F.Yang, Southeast University, China
  55 Advancing Dynamic Charge Acceptance by using functionalized pasting paper with the negative electrode 
    S.Kumar, J.Wertz, N.Clement, T.Grocela, A.Mayman, S.Cox, Hollingsworth & Vose, USA 
  56 Red lead for lead acid batteries, effects of different product characteristics 
    I.Klein, R.Bussar, M.Kirchgessner, PENOX GmbH, Germany
  57 High power thin plate technology developments 
    R.Kurian, R.Payne, EnerSys, UK
  58 Challenges in the development of high-performance lead acid batteries
    G.Langer, E.Cattaneo, B.Riegel,  Hoppecke Batteries, Germany
  59 Battery Gas Venting – an underestimated impact on battery water loss
    I.Koch, FRÖTEK-Kunststofftechnik GmbH, Germany
  60 Examination of the effects of surfactants on crystal growth and curing of the positive active material
    T.Wojcinski, E.Gao, M.Murphy, S.Luken, M.Ho, S.Barnes, M.Robotti, Hammond Group Inc., USA
  61 Bipolar designs for low temperature battery application 
    M.Roma, Ed Shaffer, Advanced Battery Concepts Inc., USA 
  62 Determining pickling reaction rate constants in bipolar VRLA batteries 
    Sh.Bruno, R.Shick, Sh.Adkins, Ed Shaffer II, Advanced Battery Concepts Inc., USA
  63 Formation of corrosion layers in bipolar lead acid batteries and their effect on performance 
    E.Hinojosa, C.Mui, Gridtential Energy, USA 
  64 Modern formation equipment for lead acid batteries 
    Y. Kulkarni, KraftPowercon, India
  65 The role of lug preheating, melt pool temperature and lug entrance delay on the cast-on-strap joining process
    A.Hosseini, Sarv Sanat Toos Co., Iran
  66 PC pulse current intelligent systems and technologies for electrochemical processes
    S.Gishin, Battery Center Europe Ltd., Bulgaria
    V.Dimitrov, Technical University – Sofia, Bulgaria
  67 Ultrasonic interrogation studies of AGM-VRLA cells
    V.Gau, N.Guillet, P.X.Thivel, A.Kirchev, CEA, France
  68 HeimBMS: VRLA battery state estimation and balancing in off-grid battery systems     
    M.Franke, J.Kowal, Technical University Berlin, Germany
  69 High-temperature durability of enhanced flooded batteries in real-world conditions 
    J.Wirth, E.Karden, D.U.Sauer, ISEA – RWTH Aachen University, Germany
  70 Chemically treated carbon materials for high dynamic charge acceptance and low water loss in lead-acid batteries 
    B.Bozkaya, J.Settelein, G.Sextl, Fraunhofer Institute for Silicate Research ISC, Germany 
  71 High DCA formulated blends for advanced lead batteries 
    Y.H.Kao, Cabot Corp., USA
  72 Improving the charge acceptance of new generation start & stop batteries with carbon additives 
    M.Ersöz, H.Gökdemir, A.Şimşek, S.Arslan, M.Mazman, Mutlu Akü ve Malz. San.,Turkey
  73 Additives for negative plate in Start/Stop batteries . Effect of carbon for increasing DCA 
    M.Fernandez, L.Puckett, C.Barreneche, APG (Atomized Products Group), Spain 
  74 A simple charge acceptance theory for battery plates. Industrial and pilot plant lead-acid battery plates 
    C.V.D´Alkaine, Freitas, Federal University of Sao Carlos, Brazil
  75 Charge acceptance issues when a VRLA/AGM cell is operated with IEC 61427-2 Clause 6.2 charge and discharge pulses of up to 120s duration simulating. Frequency regulation duty of power grids
    H.Giess, P.Ding, Narada Power Source Co, China
  76 Charge acceptance of the negative electrode of lead-acid batteries: Endeavor to understand degradation in PSoC operation in view of rate-limiting mechanisms
    E.Meissner, PhD Battery Specialist, Germany
  77 Improving Dynamic Charge Acceptance for automotive 12V batteries: Motivation - Problem Definition - Status - Questions
    E.Karden, FFA Ford Forschunggszentrum Aachen GmbH, Germany
  78 Charge acceptance vs Water loss: contradictory effects on high temperature environments
    Fr.Trinidad, Exide Technologies, Spain
  79 Charge acceptance improvement by optimizing negative plate formation
    A.Uctepe, T.Oztutan, H.Gokdemir, E.Erdem, Z.Kayali, M.Ersoz, M.Mazman, Multu Aku ve Malz.San., Turkey
  80 A novel separator for optimal battery performance to meet new market demands
    N.Madella, Microporous, GmbH, Austria
  81 Measurement of oxygen transport through separators in flooded batteries
    R.Waterhouse, K.Duchateau, E.Hostetler, ENTEK International LLC, USA
  82 Journey of the molecule: from the waste to paste. A hydro-metallurgical process for the recycling of spent battery paste
    A.Fox, Aurelius Environmental, UK
  83 Advanced electrochemical lead recovery from spent lead acid batteries with novel electrolyser designs 
    X. Wu, Huazhong University of Science and Technology, China
  84 New innovative route for the desulphurization of lead paste 
    G.Fusillo, F.Scura, G.La Sala, STC S.r.l. Lead Division, Italy
  85 Multilayer separator based on AGM and polymer membrane for sealed lead-acid batteries 
    A.A.Izbasarova, M.M.Burashnikova, Saratov State University, Russia
  86 A Study on the PAM/grid corrosion layer during the life cycle of lead acid positive plates
    Ph.Sholtes, M.Ros, and Sh.Peng, Trojan Battery and C&D Technology, USA
  87 Novel lead-graphene composites with improved mechanical and corrosion properties
    L.Yolshina, Institute of High-Temperature Electrochemistry, Russia
  88 Lead-Carbon battery towards renewable energy storage: from mechanism, materials, to applications
    W. Zhang, J.Yin, H.N.Alshareef, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
    H.B. Lin, Jilin University, China
  89 Is lead battery threatened by Li-ion? Yes & No 
    S.Joshi, Greenvision Technologies PVT. Ltd., India
  90 Advanced Lithium Batteries
    K.Banov, B.Banov, IEES-BAS, Bulgaria
  91 Ionic diffusion modelling of lead-acid gel and AGM batteries with respect to state of charge 
    M.G.Verde, T.Hasanali, Sh.Peng, Trojan Battery and C&D Technology, USA
  92 Mathematical modeling of changes in the electrochemical parameters of lead-acid cells under various conditions and operation modes 
    A.Aleshkin, Y.Bubnov, V.Ruzhnikov, V.Yagnyatinsky, AC Buster Ltd., Russia
  93 Electrochemical impedance spectroscopy on test cells
    S.Matthies, Technical University Berlin, Germany
  94 Formalization and implementation of a global model: application to lead acid batteries 
    F.Coupan, University of Guyane, France
  95 Numerical simulation of the ultra-battery during high rate partial state of charge     
    V.Esfahanian, N.Aghamirzaie, A.Jafari, M.T.Dalakeh, University of Tehran, Iran
  96 Modeling and verification of lead-acid battery grid design 
    T.Isler, M.Ersoz. M.Mazman, Mutlu Aku ve Malz. San. A.S., Turkey
  97 A critical review update of the now more-than 50 years old review by Simon, Burbank and Willihnganz. What have we learned? What directions should future research take?
    G.Mayer, Battery Technology Center Inc., USA
  98 A preliminary report on a novel electrochemistry that should overcome PCL 1, 2 and 3, allow rapid recharge, and have a long cycle life at any DOD/ any PSOC
    G.Mayer, Battery Technology Center Inc., USA
  99 Optimization of grid configuration by investigating its effect on positive plate of lead-acid batteries via numerical modeling
    A.Hosseini, Sarv Sanat Toos Co., Iran
  100 The influence of methanesulfonate ions on physico-chemical properties of lead dioxide coatings 
    A.Velichenko, T.Luk’yanenko, O.Shmychkova, Ukrainian State University of Chemical Technology, Ukraine
  101 Sodium versus lithium ions in advanced energy storage systems
    K.Banov, B.Banov, IEES-BAS, Bulgaria
  102 Active electrode materials with improved electrochemical performances
    K.Banov, B.Banov, IEES-BAS, Bulgaria