11th International Conference on Lead-Acid Batteries

LABAT'2021

8-11 June 2021, Virtual conference

PROCEEDINGS

(Extended Abstracts)

Prime sponsors

Sponsors

11th International Conference On Lead-Acid Batteries

LABAT'2021

8 - 11 June 2021, Virtual Conference

Organized by:

Lead-Acid Batteries Department
Institute of Electrochemistry and Energy Systems
Bulgarian Academy of Sciences
Sofia 1113, BULGARIA

Prime Sponsors:

Sponsors:

Proceedings of

11th International Conference on Lead-Acid Batteries - LABAT'2021 (Extended Abstracts) 8-11 June 2021, Virtual Conference

Editor-in-chief Dr. Geno Papazov,

Editors

Dr. Albena Aleksandrova Ms. Dina Ivanova Dr. Maria Matrakova Dr. Plamen Nikolov Dr. Yovka Milusheva

Cover pages designed by Ognian Dimitrov Printed by GEA 2000, Bulgaria

Published by:
Lead-Acid Batteries Department (LABD)
Institute of Electrochemistry and Energy Systems (IEES)
Bulgarian Academy of Sciences (BAS)
Acad. G. Bonchev Str., Block 10
1113 Sofia, Bulgaria
Tel./Fax: +359 2 8731552
www.labatscience.com
www.iees.bas.bg

June, 2021

ISSN: 2367-4881 (Print) ISSN: 2738-8468 (Online) © Copyrights by IEES-BAS

LOCAL ORGANIZING COMMITTEE (IEES-BAS, BULGARIA)

Chairman: Dr. Geno Papazov

Co-Chairman: Prof. Dr. Vesselin Naidenov **Secretary:** Mrs. Mariana Gerganska

Dr. Albena Aleksandrova
Dr. Boris Shirov
Mr. Ognian Dimitrov
Mr. Dimitar Dimitrov
Dr. Plamen Nikolov
Ms. Dina Ivanova
Prof. Dr. Sasho Vassilev
Prof. DrSc. Evelina Slavcheva
Dr. Iliyan Popov
Dr. Yovka Milusheva

INTERNATIONAL ADVISORY COMMITTEE

Dr. Paolina Atanassova

Mr. Gordon C. Beckley

Dr. Timothy W. Ellis

Cabot Corporation, USA

Hammond Group Inc., USA

RSR Technologies, USA

Prof. Dr. Juergen Garche Fuel Cell and Battery Consulting - FCBAT, Germany

Dr. Herbert K. GiessConsultant, France

Prof. Dr. Noubumitsu Hirai National Institute of Technology, Japan

Prof. Dr. Shou-Nan Hua Shandong University, China

Dr. Shashikant JoshiGreenvision Technologies Pvt Ltd., India

Dr. Angel Kirchev Institut National de l'Energie Solaire - INES RDI, France

Prof. Dr. Haibo LinJilin University, China

Dr. Geoffrey J. MayFocus Battery Consulting, United Kingdom **Prof. Dr. Vesselin Naidenov**IEES, Bulgarian Academy of Sciences, Bulgaria

Mr. John R. Pierson[†] Pierson Consulting, USA

Mr. Ajoy Raychaudhuri Battery & Recycling Foundation International, India
Dr. Bernhard Riegel HOPPECKE Batterien GmbH & Co. KG, Germany

Dr. Masanori Sakai Hitachi Chemical Co., Ltd., Japan
Dr. Edward O. Shaffer II Advanced Battery Concepts, LLC, USA

Mr. Kevin M. Smith East Penn Mfg. Co., Inc., USA
Dr. Jesus Valenciano Exide Technologies, Spain

Prof. Dr. Petr VanysekBrno University of Technology, Czech Republic

Prof. DrSc. Alexander B. Velichenko, Ukrainian State University, Ukraine

Dr. Rainer Wagner Akkumulatorenfabrik MOLL GmbH & Co.KG, Germany

GASTON PLANTÉ MEDAL COMMITTEE

Prof. Dr. Andrzej Czerwinski

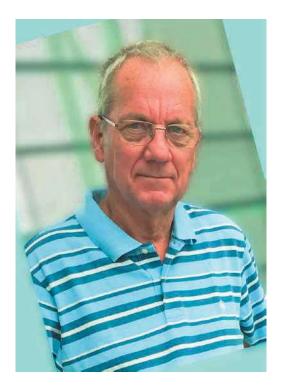
The University of Warsaw, Poland

Mr. Gordon Beckley

Hammond Group Inc., USA

Prof. Dr. Carlos V. D'Alkaine† Federal University of Sao Carlos, Brazil Dr. Timothy W. Ellis Consortium for Battery Innovation & RSR Technologies Inc., USA Dr. Jun Furukawa Planté Medalist LABAT'2017, Japan Prof. Dr. Yonglang Guo Fuzhou University, China Dr. Lan Trieu Lam Planté Medalist LABAT'2011, Australia Dr. Eberhard Meissner Planté Medalist LABAT'2014, Germany Mr. Klaus Dieter Merz Abertax Technologies Ltd., Malta Dr. Boris Monahov Planté Medalist LABAT'2014, USA Dr. Patrick T. Moseley Planté Medalist LABAT'2008, UK Dr. Geno Papazov Planté Medalist LABAT'2017, Bulgaria Planté Medalist LABAT'1996, Australia Dr. David A.J. Rand Mr. Ajoy Raychaudhuri Battery and Recycling Foundation International, Prof. Dr. Lyudmila Yolshina Urals Branch of Russian Academy of Sciences, Russia

GASTON PLANTÉ MEDAL MEDALLISTS


Dr. Ernst Voss	VARTA Batterie AG, Germany	1989
Dr. Paul Ruetschi	Leclanché S.A., Switzerland	1993
Prof. Dr. Detchko Pavlov	IEES, Bulgaria	1994
Dr. Kathryn Bullock	Medtronic, Inc., USA	1996
Dr. David A. J. Rand	CSIRO, Australia	1996
Dr. Norman Bagshaw	NEB Consultants, UK	1999
Mr. John Devitt	Consult. Electrical Engineer, USA	1999
Dr. David Prengaman	RSR Corporation, USA	2002
International Lead Zinc Research Organization, USA		2002
Prof. Dr. Zen-Ichiro Takehara	Kansai University, Japan	2005
Dr. Patrick Moseley	ALABC/ILZRO, USA	2008
Dr. Lan Trieu Lam	CSIRO, Australia	2011
Mr. Kenneth Peters	Battery Consultant, UK	2011
Dr. Eberhard Meissner	JCI Power Solutions EMEA, Germany	2014
Dr. Boris Monahov	ALABC/ILZRO, USA	2014
Dr. Jun Furukawa	The Furukawa Battery, Japan	2017
Dr. Geno Papazov	IEES, Bulgaria	2017

2021 GASTON PLANTÉ MEDAL NOMINEES

Prof. Dr. Jürgen Garche	Ulm University, Germany
Dr. Herbert K. Giess	Pyramid Vision Consulting, Switzerland
Dr. Eckhard Karden	Ford Research Aachen, Germany
Dr. Francisco Trinidad	Exide Technologies, Spain

Congratulations to Dr. Herbert Giess - the 2021 Gaston Planté Medal winner!

Dr. Herbert Giess was born in 1945 in the small German speaking village Jenesien in the South Tirol region of Italy and has worked for over 30 years for various research centers and companies in Italy, France, Switzerland, China and other countries.

He has numerous fundamental contributions to the development of lead-acid battery science and technology the most important of which include:

- Study of the effect of tin in the lead alloys for positive battery plates and its mitigating action in preventing the passivation of the grids after deep discharge as well as determining its minimum content in the alloy;
- Elucidation of the so called "antimony-free effect" responsible for premature capacity loss of the batteries;
- Qualification of 2V VRLA/AGM cells for back-up power in Nuclear Power plants;
- Co-development with the Institute of Electrochemistry and Energy Systems at the Bulgarian Academy of Sciences of selenium containing alloys for the prevention of negative strap corrosion in VRLA/AGM cells;
- Development of VRLA/AGM cells with > 3000x C10 capacity throughput capability for energy systems applications resulting in the capture a predominant market share in China. Managing the development of essential International Lead Acid Battery Standards for Stationary Power Back-up, Energy Storage Systems and Lightweight vehicles.

"Prof. Detchko Pavlov" Young Scientists Award for best oral or poster presentation

In 2020, the Lead-Acid Batteries Department of Institute of Electrochemistry and Energy Systems (IEES) at the Bulgarian Academy of Sciences decided to establish an award to be presented at each LABAT conference to a young scientist (below the age of 35 years).

The award is named after the eminent lead-acid battery scientist Prof. Detchko Pavlov (1930-2017), founder and head of the Lead-Acid Batteries Department of IEES for almost 50 years and "father" of the series of LABAT conferences. The award is intended to encourage young scientists to strive for excellence in their research work as our brilliant teacher did throughout his life.

Congratulations to Marcel Franke and WenLi Zhang!

The 2021 winners of "Prof. Detchko Pavlov" Young Scientist Award elected by LABAT'2021 attendees with equal percent (34%) of the votes.

Special acknowledgments to the panelists and moderators of LABAT'2021!

The Organizers of LABAT'2021 extend their sincerest gratitude to all experts who took part in the panel discussions. Thanks to their competence and high professionalism, the discussions held during the conference were most interesting and informative, thus they contributed greatly to the high scientific level of LABAT'2021.

Thank you very much, dear colleagues!

Paolina Atanassova

Paul Everil

Jun Furukawa

Juergen Garche

Manfred Gelbke

Herbert Giess

Eckhard Karden

Angel Kirchev

Tim McNally

Eberhard Meissner

Boris Monahov

Plamen Nikolov

Boris Shirov

Francisco Trinidad

Jesus Valenciano

The Organizing Committee of LABAT'2021 extends its heartfelt thanks to the whole teams of The Virtual Show and Launchee for the high professionalism, genuine dedication and valuable support they provided to us for the virtual visualization of the event.

Contents	Page
Particle size and surface shape of active materials in lead-acid batteries: Impact from free surface energy E. Meissner	1
Lead-acid batteries in Partial-State-of-Charge operation: A Challenge for kinetics of battery recharge E. Meissner	6
Development of technologies for automotive lead-acid batteries J. Furukawa	11
Charge acceptance issues when a VRLA/AGM cell is operated with the IEC 61427-2 clause 6.2 and Sandia PNNL 5.3.2 profiles simulating frequency-regulation duty in power grids H. Giess, P. Ding	15
MOLECULAR REBAR® enhances the corrosion layer of lead-acid battery positive plates to improve cycling in corrosion tests P. Everill, R. DeGuzman, S. Swogger, N. Sugumaran	21
High performance carbons for advanced lead-acid batteries P.G. Pérez, F. Mornaghini, D. Cericola	26
Nanostructured lead-acid negative electrode with reduced graphene oxide M. Rossini, F. Ganci, B. Patella, A. Aiello, M. G. Insinga, L. Oliveri, R. Inguanta	29
Influence of graphene layer variation on lead-acid negative plate performance A.L.C. Assuncao, E.S. Goncalves	33
The effect of lignosulphonate and/or carbon black on the electrochemical reaction on Pb flat electrode N. Hirai, R. Minami	37
In-situ measurement of lead electrodes combining cyclic voltammetry and amplitude modulation atomic force microscopy: Growth of lead sulfate crystals Y. Imamura, T. Akatsu, D. Katsube, A. Kogure, N. Hirai, M. Kimura	41
Conductive compounds as positive active material enhancers M. Garcia, J. Valenciano, H. Fricke	45
Unique gold nanoparticles overcome crystal growth impedimetric effects of PCL1 in lead acid batteries W. Niedermeyer, G. Mayer	49
Crystals and active masses in lead batteries V. Naidenov	55
Examination of the effects of surfactants on crystal growth and curing of the positive active material M. Robotti, S. Barnes, T. Wojcinski, E. Gao, M. Sherrick, S. Luken, M. Ho	60

Lead battery positive active mass structural changes during PSoC operation and electrolyte additives improving battery cycling endurance in automotive applications P. Nikolov, M. Matrakova, A. Aleksandrova	63
State of the art in formation and filling process for VRLA batteries in GEL technology K.D. Merz	69
Lead acid batteries based on chemically prepared (basic) lead sulphate L. Lei, J. Hu, J. Sun, F. Yang	73
Advancing Dynamic Charge Acceptance by using functionalized pasting paper for the negative electrodes S. Kumar, J. Wertz, N. Clement	77
Challenges in the development of high-performance long life lead acid batteries G. Langer, B. Riegel, E. Cattaneo	81
Effect of curing temperature on performance of PAM using 4BS crystal A. Watanabe, H. Hagihara, T. Mangahara, J. Furukawa	85
Optimized battery formation with Crystal Control Technology of WaveTech B. Shirov, V. Naidenov, B. Monahov, D. Valand, Y. Milusheva	89
Determining pickling reaction rate constants in bipolar VRLA S.R. Bruno, R.A. Shick, S.W. Adkins, E.O. Shaffer II	94
Influence of phosphate species on the operation of titanium-supported lead dioxide electrodes A. Kirchev, L. Serra	98
HeimBMS: VRLA battery state estimation and balancing in off-grid battery systems M. Franke, J. Kowal	102
Improved plate performance of automotive batteries using tetrabasic seeding material – impact of porosity and electrode structure on electrical performance and cycle life R. Bussar, H. Ramianpour, I. Klein, M. Kirchgessner	106
Red lead for lead-acid batteries, effects of different product characteristics I. Klein, R. Bussar, M. Kirchgessner	110
Effect of residual elements in lead-acid batteries	115
A.F. Romero, J. Valenciano, H. Fricke, P. Ocón New innovative route for the desulphurization of lead paste G. Fusillo, R. Iannelli, F. Scura, G. La Sala	119
Lead-Carbon battery negative electrodes: mechanism and materials W.L. Zhang, J. Yin, H.N. Alshareef, H.B. Lin, X.Q. Qiu	123
Charge acceptance vs Water loss: Contradictory effects on high temperature environments F. Trinidad	127

Improving Dynamic Charge Acceptance for automotive 12V batteries: Motivation – Problem Definition – Status – Questions E. Karden	132
Expanders for flooded and new EFB batteries for Start/Stop and HEV applications M. Fernandez, L. Puckett, C. Barreneche	136
A simple charge acceptance theory for battery plates. Industrial and pilot plant lead- acid battery plates C.V. D'Alkaine, H.R. de Freitas, G.L. Grespan, A.C.L. Pitoli	140
Lead-tin-graphene composite with excellent corrosion-electrochemical and mechanical properties L. Yolshina, V. Yolshina, M. Zhou, X. Yang, X. Liu, Y. Wu, B. Wang, X. Zhang	144
Electrochemical impedance spectroscopy on test cells S. Bauknecht, J. Kowal	149
Ultrasonic interrogation studies of AGM-VRLA cells N. Guillet, V. Gau, A. Kirchev	153
Mathematical modelling of changes in the electrochemical parameters of lead-acid cells under various conditions and operation modes A.A. Aleshkin, Y.I. Bubnov, V.O. Ruzhnikov, V.M. Yagnyatinsky	157
Numerical simulation of the ultra-battery during high rate partial state of charge V. Esfahanian, N. Aghamirzaie, A. Jafari, M.T. Dalakeh	161
Application of rice husks as green carbon material in lead-acid battery negative electrodes A. Aleksandrova, M. Matrakova, P. Nikolov	165
Influence of additives in the active materials of lead batteries on the performance of the positive plates M. Matrakova, A. Aleksandrova, P. Nikolov	171
Physicochemical characterization of the effect of the additive BB on the active masses of lead-acid batteries D. Pavlov, V. Naidenov, Y. Milusheva, S. Vassilev, T. Shibahara, M. Tozuka	177
Electrochemical measurements of single and a coupled lead-graphite felt electrodes in sulfuric acid solution A. Ilginis, E. Griškonis	182
Electrochemical evaluation of various commercial expanders for lead-acid battery application A.A. Hosseini, M. Kalani, A. Kosari	187
Optimization of grid configuration by investigating its effect on positive plate of lead-acid batteries via numerical modeling A.A. Hosseini, M. Azimi, H. Hashemi, M. Kalani, D. Nakhaie	191

xviii

Evaluation of new technologies and possibilities for the future of the lead-acid battery using Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) methodologies A.L.C. Assuncao, E.S. Goncalves, M. Gandara, T.C. Gaino	195
Formation of corrosion layers in bipolar lead acid batteries and their implications on power performance S. Hinojosa, C. Mui	197
Influence of electric current parameters on resistance of inorganic water solutions R.H. Sharipov, U.A. Balgimbayeva, B.T. Utelbayev, E.N. Suleimenov	201
Charge acceptance improvement by optimizing negative plate formation A. Üçtepe, M. Mazman, E. Erdem, Z. Kayali, T. Öztutan, M. Ersöz, H. Gökdemir	206
Composite electrode with enhanced electrochemical performances K. Banov, B. Banov	210
Active electrode materials obtained from industrial wastes K. Banov, B. Banov	214
Investigation of Pb_3O_4 as a negative active material in aqueous lithium ion battery T. Petkov, S. Stankov, I. Popov, A. Momchilov	218
Authors Index	222